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We investigate the effect of symmetric stringers, which reinforce a plate in the 

zone of a circular hole, upon the distribution of the stress field around the hole. 
The problem reduces to a singular integral equation of the first kind which ad- 

mits an approximate examination. 
An extensive literature is devoted to the problem of the transmission of forces 

to an elastic body through a stringer. A survey of the results obtained till 1968 
is given in [l] , where one can find the c~esponding bibliographic data, The 

papers [2-71 belong to the recent investigations devoted to the theoretical as- 
pect of the problem. 

We mention that, obviously, the authors of p] were not aware of the papers 

C5, 61. 

1. Form~l4tlon of the problem rnd notation, Anelasticbody hasthe 
form of an infinite plate with a circular hole. Two identical elastic bars of constant 

cross section, situated on the same line and with ends on the circumference of the hole 
are attached (welded) to the plate in the radial direction. The hole is assumed to be 
free of applied forces. To the ends of the bars at the hole there are’ applied equal and 
opposrte axial forces and the plate is subjected at infinity to uniaxial extension in 
the direction of the bars. We assume that the elastic medium is deformed under the con- 

ditions of generalized plane state of stress and that the reinforcing bars, called stringers 
from now on, are idealized one-dimensional continua, deprived of flexural rigidity. 
There arises the problem of the determination of the effect of the stringers on the distri- 
bution of the stresses in the plate around the hole. 

For the sake of simplicity, the radius of the hole is taken to be equal to unity. We take 
the surface of the plate in the plane of the variable 2 = J: .-b iy, the center of the hole 

in the origin and we place the axes of the stringers along the segments [- ~1, -11 and 

[l , 01 of the real axis (Fig. 1). The algebraic value of the axial load, applied to the 
end of the left bar, is denoted by p. and the tensile force at infinity by P. 

For the elements of the elastic fields and for the characteristics of the plate and the 
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stringer we adopt the following notation: 05, 02/, zXy denote the stress components in 
the plane field, ZE, v are the displacement components, N (x) is the normal force 
in the section of the stringer, aC is the relative elongation of the axis of the stringer, 
E, Y are the elastic constants of the material of the plate, E, is the modulus of elas- 
ticity of the stringer, SO is the area of its cross section and h is the thickness of the 

( 

\_/ -- 

Fig. 1 

plate. We introduce also the length, the thickness and the width of the stringer, denoted 

below by 1, ho and b , respectively, 1 = n - 1. On this axis of the stringer we will 

make distinction between the left and the right edge (with respect to the positive direc- 

tion of the z-axis) and we will assign to the quantities o,and so on, relating to them, 
the signs plus and minus, respectively, 

For the solution of the problem we will follow the method indicated in [S] in con- 

formity with the asymmetric case. 

2, Boundrry condftfon,, First of all we express the conditions of simultan- 

eous deformations of the plate and the stringers. The condition of the equilibrium of 

any infinitely small portion of the stringer, fastened to the plate gives two equations 

h (6.v - Gv) + N’ (X) = 0, 0; - 0; = 0, l<]sJ<n (2.1) 

The first equality expresses the condition of the vanishing of the projections on the Z - 

axis of all forces applied to the surface of an elementary volume of the stringer con- 
tained between two of irs cross sections of coordinates x and n: -k &. The second 
equality obtained by projecting all forces onto the y-axis, has been derived by taking 

into account that the stringer does not resist to bending. After integration, the first equa- 

lity of (2.1) gives 

Because of the symmetry of the problem we have the following physically obvious 

relations : 
To (- x) = - a0 (4, N(- x) = N (2); l<x<a (2.3) 

Therefore in the sequel it is sufficient to restrict ourselves to the equality (2.2) in which 
Xa = 1. 

We make use now of the condition of continuity of the elastic displacements at the 
axis of the stringer and of the equality of deformations at the same axis. We have 
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,IJ+ + iv+ = a- j-- iv- (2.4) 

(2.5) 

On the basis of (2.5) making also use of the formula 

N (X) = E,S,E” (z) 

well-known from the theory of small deformations of curvilinear beams, the equilibrium 
condition (2.2) and the second condition (2.1) can be represented in the form of one 

complex equality in the following manner: 

h 5 I(&, + is,+) - (zXy + kg-)1 dt + &So (?$I+ - po = 0, I < z <u (2.6) 
1 

We introduce the Muskhelishvili functions (p (z) and ‘tt, (z) and we recall the known 
formula (see [9], $ 33), valid along any profile AU in the field of plane stress (the 
point A is fixed and B is variable). 

cp (2) + zq’ (2) + $7) = i ( (X, + iY,) ds + const (2.7) 

The positive direction on AB is from A to B and the positive normal rz to the pro- 

file is pointed to the right ; X,ds, Y,ds denote the components of the stress vector act- 

ing on the element cls from the side of the positive normal, In the given case, the func- 
tions cp (z) and 4) (z) are piecewise-holomorphic in the plane outside the hole and have 

as jump lines the segments [ - a, - 11 and 11, a]. 
Formula (2.7) allows us to express the boundary conditions of the problem in terms of 

the functions ip and $. By arguments completely similar to those given for the case of 
one stringer (see [8], $31, 33), we can see that the conditions (2.4) and (2.6) along the 
junction line are equivalent to the following two real equalities: 

Re {rp- (t) - cp+ (t)) = 0 on L+fL- (2.8) 
I 

1 (G, - 
-- 

G,) dt 4 AC0 Re 2 [zcrp (3) - q (x) - 9 (x))] - 9 = 0 (2.9) 
1 
on L+ 

Here p is the shear modulus of the material of the plate while Lf and L- are the 

intervals (1, a) and (--a, -* - I), respectively ; by the expression x cp (t) - tqT)- 
+ (I), when the point t lies on L+ + L-, we understand the common limiting values 
from the left and from the right of the complex displacement 2~ (a + iv) at the cor- 

responding point,The form in which the condition (2.9) is written presupposes the pre- 
sence of the relation (2,3)* 

Finally, the condition at the contour of the hole is written in the usual form 

‘p (o) + ocp’ (3) + 97) = 0 on y (0 = Zi”) (2.10) 

where y is the circumference 1 z 1 = 1 and o is a point on it. 
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The equalities (2.8) -(2.10) exhaust all the conditions of the problem. 

3. The con:truction of the complex potentials, At any point J: on 
the segments L+ and L-, where the stringer is joined with the plate, there arises the 
force q (x) directed along the axis of the stringer and equal to 

4 (4 = - G!, (2, 0) + G?, (5, 0) (3.1) 

q (- x) = - q (Lx) 

The potentials 9 and I$, corresponding to the force (q, 0) concentrated at the point 
t (1 < 1 1 1 < (L) and to the tensile force 1’ at infinity, have the form 

‘p (2, I) = - p (t) 111 G -I- + z -t cpo (7, t) (3.2) 

$ (2, 1) = p(t) [X 111% -I- &] - l‘,: + I& (z, t) 

Here 

P (4 = 
!7 (4 

2n (1 +X) ’ 
r=$ 

while qpo and I$,, are functions of z holomorphic everywhere outside the hole including 
the point at infinity. These latter as well as the functions cp and II, depend on the real 
parameter t varying in the intervals L+ and L- , The functions q+, and I#~ will be 
determined from the boundary conditions (2.10) which by virtue of (3.2) give 

cpo (o, 0 + ocpo’) i- $0 (o, t) = fo (0, t) 

f. (:, t) = p (t) [lt,S - 
xln 1 -53t G (5 - 1) 5 (3 -f- f) _++-_- 

1 +5t l--t 1 +at 1 
r(G-+) 

The solution of this problem can be represented in the form (see [9], 8 82) 

These integrals can be easily computed with the Cauchy integral formula and the gene- 

ralized residue theorem. Performing the necessary computations and substituting the 
obtained functions q0 and $,, into the right-hand side of the formulas (3.2) we find for 
the functions cp and 9 

2 (1 - ty (1 + ZV) 2 -- 
zt (1 - ,wy zt 
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On the basis of (3.3) the desired potentials of the problem can be represented in the 
form 

cp (2) = -& $ Q1 (z, t) r V) f& + g, (z) 

* L+ 
(3.4) 

9 (z) = -& j Q,(z, t)z (qdt + gz(z), t (2) = &-cEp (x) 

From the way the functionrp, (z) and 9 ( z were constructed, it follows that they satisfy ) 

the boundary conditions (2.10) for any real t (x). We can also see that condition (2.8) 

is satisfied exactly. In the case when the stringer is absent, we have: z (z) = 0 on 
Lf, z (- X) = - r (E), and the functions (3.4) give the solution of the well-known 
Kirsch problem. , 

4. Rsductfon to an fntegral equation. It remains to satisfy the condition 
given bv the equality (2.9). To this end, making use of (3.4) we express the combina- - - 
tion --x’p (21 + 29’ (2) + 9 (2) in integral form and we compute the kernel of the 
integral expression for .Z = Z. After elementary computations we obtain for the kernel 

Q C-G 0 

%tQ (X, 1) = X [In (Z - t) + In (x - t)] - 2x In (5 + t) + (.x2 + 1) In $$- + 

2% 
t2 - 1 
-F--f ?+-I 

xt 1 2(1-12)(22-l) 1 +dw 2 
o_ 1 - &2 -r- X* 1 -- 

xt (1 - xw)z xt 
(4.1) 

The right-hand side of this equality, without its first two terms, represents a regular func- 

tion of the variables x and t for 1 < X, t < u. Therefore, in computing the deriva- 

tive -- 
d I ax [W (x) - “‘p’ W - ‘II) (x) I 

we can, with the indicated reservation, differentiate under the integral sign. However, 
for the computation of the derivatives of the terms which contain under the integral the 
function 111 (a - t) or its conjugate, we have to make use of the formulas 

&g \ ln(x-t)T(t)dt=-T(x)+; \ J.gq 
i+ i+ 

&$ s ln(x-t)Z(t)dt-_ t(x)+& ’ $$ 
L+ 

s 
L+ 

which hold for any function z (z) continuous on L+ in the Holder sense ; the integrals 
on the right-hand sides are considered in the sense of the Cauchy principal value. Per- 
forming all the necessary computations and changing under the integral in (2.9) the 
difference rXV+ - r,v- by its value given by the equality 

+ 
%Y - z,y = - (1 + X) Z (5) on L” 

we arrive to a singular integral equation relative to Z (z) 

1 r (t) dt - 
2n s -+&\ t-x k, (5, q T (Q co = fo (4 

Id+ i+ 

(4.2) 
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Here 

We introduce the auxiliary complex variable 5 = z f iq by the relation 

s = UT; + B; a = l/2, /3 = a + 1 

where I is the length of the stringer. After such a substitution, the axis of the (right) 

stringer turns into the segment f-1. l] of the real axis g and the outline [ z 1 = 1 of 
the hole in the physical plane turns into a circumference of radius Zjl with center at 
the point 5 = ‘! - 2 1 1. Equation (4.2) becomes 

(4.3) 

12 (El r> = ako (x7 0, y (8 = x (4, f (3 = fo (x> 

x= aE+$, t=ar+P 

After finding the solution t (CC) of Eq. (4.2). the formulas (3.4) give the solution of our 

problem. 

6. The computation scheme, We assume that the singular equation (4.3) 

has a solution Y (E) satisfying the Holder condition at any closed part of the segment 

C-1, l] not containing the endpoints g = & 1 and having at the endpoints of the seg- 
ment singularities of order less than unity, The scheme of the approximate solution of 

an equation of the form (4.3) is given explicitly in ( ES], $ 13, 33). 
We seek the solution in the form 

Y (ZJ = (1 + E)‘:I (1 - Q-“* v” (Q (5.1) 

where v* (5) is a continuous function on the segment without the left endpoint, approx- 

imated by a Lagrange polynomial constructed over the Chebyshev nodes (n is a natural 
number) 

E, = cos 6,, fj =;2+-1 
m -51, 2n m=1,2,...,n (5.2) 

As it is known, the approximating polynomial has the form 
n 

v’(E) = Ln [y”; El = f kzL (- l)k+lyo (EC) 
cos n@ sin 6, 

cos 6 - cos@, (E; = cos 6) (5.3) 
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The representations (5.1) and (5.3) lead to a quadrature formula for the singular integ- 
ral (see [8], formu~ (13.13)) 

For the computation of the integrals contained in (4.3) in the usual sense, we will 

make use of the Gauss-type formula (for example, [lo], p. 614 Russian edition) 

(5.5) 

The quadrature formulas (5.4) and (5.5) allow us to replace Eq. (4.3) by a system of 
linear equatrons relative to the approximative values of v” (E) at the interpolation 
nodes 

Here k=l 

m, m=i,2,...,n (5.6) 

6, 1 + ctg --ptg 
s,i 6, 

2 + (i + COS +k) k (COS @m, COS 6,) 
I 

v O- v” (COS Bm), fm = f (COS 6m) 
(5.7) 

m- 

The upper sign in (5. ‘7) is taken in the case when the number 1 m - k 1 is odd and the 
lower sign when it is even (zero is considered an even number), After solving the system 

(5.6). the approximate solution of Eq. (4.3) is determined by the formulas (5.1) and 

(5.3). 
We turn to the computation of the physical quantities, Apparently, the greatest inte- 

rest represents the determination of the effect of the stringer on the magnitude of the 
tensile stress os along the contour of the hole. We recall the known formula 

oa f or = 4Re cp’ (z) (5.3) 

which gives the sum of the normal stresses at any point of the domain occupied by the 
elastic medium, In the case under consideration, when applied forces are not acting 

along the boundary of the hole, the limiting values of the right-hand side on y, which 
exist everywhere except at points z = I- 1 will give the value of oa at the correspon- 
ding point of the circumference. From the first formula of (3.4) and the expression of 

Q I (z, 1) from (3.3) we find by differentiation 

Obviously, the function cp’ (z} is holomorphic everywhere outside the hole, except for 
the points of the line .&+ + A-. The contour stresses os attain a maximum in abso- 
lute value at the points z = f i. We can see that the function cp’ (z) has at these 
points the same real part and their common value is given by the formula 

Re 9’ (2) I- + S m (t) 1: (t) dt + + I? for z = +- i 

L+- 
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The integral, by virtue of the continuity of m (t) is computed with the formula (5.5) 
1 

f s m(t) z (t) dt = -$ s 
mCJ (!,) y (5) d% IT= + fi (1. + cos 6,) m, (cos 6,) Yk 

L+ 

According to the indicated scheme, in the case of simple extension at infinity : p. = 
0, P -= 1, we have computed the maximum contour stresses 01-a as function of the ratio 

of the reduced rigidities m = E,h, / Eh. For the other parameters of the problem we 
have taken (v is the Poisson’s ratio): v = ii,, b = 0.2, 1 = 1. 

Below we give the numerical values of o, = 131nx oa, obtained by solving (5.6) 
with 71 = 40, 111 =: 1 ,“t, . , . , !f 

2.2200, 2.2649, 2.3007, 2.3292, 2.3522, 2.3510. 2.3866. 2.3998, 2.4109 

Clearly, the maximum stress os decreases with the decrease of the relative rigidity m 
The computations show that for a further decrease of m,as some value m. less than 
unity is reached, an apposite dependence occurs. For m --+ i) , the maximum value Go 

approaches the number three. 
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